
International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013 1
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

An Empirical Approach for Test Case
Prioritization

Himanshi Raperia, Saurabh Srivastava

Abstract— Regression testing is one of the most critical activities of software development and maintenance. Whenever software is modified, a set
of or all the test cases are run and the comparison of new outputs is done with the older one to avoid unwanted changes. If the new output and old
output match it implies that the modifications made in one part of the software didn’t affect the remaining software. It is impractical to re-execute
every test case for a program if changes occur. In this paper an algorithm is proposed to prioritize test cases based on rate of fault detection and
impact of fault. The proposed algorithm identifies the severe fault at earlier stage of the testing process and the effectiveness of prioritized test case
and comparison of it with unprioritized ones with the help of APFD.

Index Terms —software testing;regression testing; test case; test case prioritization; fault detection; fault impact; APFD

—————————— ——————————

1 INTRODUCTION

Software Testing forms one of the indispensable parts

of the software development life cycle and heavily
depends upon the design of the software. It also
depends upon the software tester, guidelines of the
organization, which developed the software and various
other factors. Regression testing is a necessary but
expensive process in software lifecycle. One of
regression testing approach, test case prioritization, aims
at sorting and executing test case in the order of their
potential abilities to achieve certain testing objective.
 Software developers often save the test suites, so
that they can reuse them, when software undergoes
changes. Running all test cases in an existing test suite
can consume enormous amount of time. For example a
product that contains approximately 20,000 lines of code
running an entire test suits requires seven weeks.
Researchers have found various algorithms to reduce
the cost of regression testing and also to increase the
effectiveness of testing [ZHE2007] Dennis Jeffrey and
Neelam Gupta [DEN2007] have tested experimentally by
selectively retaining test cases during test suite
reduction.
In [JEN2004], they have empirically evaluated several
test case filtering techniques that are based on
exercising information flows. The other way of testing is
to order the test case based on some criteria to meet
some performance goal. Testers may want to order their
test cases so that those test cases with the highest
priority according to some criterion are run first. So test
case prioritization technique do not discard test cases,
they can avoid the drawback of test case minimization
techniques. The software is successful when Quality of
software is maximized, cost should be minimized and the
product should be delivered to the customer in time
[JKA1997], [MAR2006], [ALE2002].

In [SEB2002], Sebastian Elbaum et. Al. investigated
several prioritization techniques such as total statement
coverage prioritization and additional statement
coverage, to improve the rate of fault detection. There
are varieties of testing criteria that have been discussed
and the different testing criteria are useful for identifying
test cases that exercise different structural and functional
elements in a program, and therefore the use of multiple

testing criteria can be effective at identifying test cases
that are likely to expose different faults in a program. In
this paper, one new approach to prioritize the test cases
at system level for regression test cases is proposed.
This technique identifies more severe faults at an earlier
stage of the testing process.
Factors proposed to design algorithm are:

1) Rate of faults detection (how quickly the faults are
identified
2) Impact of Fault. We can analyze the test cases by
feeding faults, invariant of the severity into any program.

The APFD metric relies on two assumptions: (1) all faults
have equal costs (hereafter referred to as fault
severities), and (2) all test cases have equal costs
(hereafter referred to as test costs). Earlier empirical
results suggest that when these assumptions hold, the
metric operates well. In practice, however, there are
cases in which these assumptions do not hold: cases in
which faults vary in severity and test cases vary in cost.
In such cases, the APFD metric can provide
unsatisfactory results.

2 RELATED WORK
Test case prioritization is an effective and practical
technique that helps to increase the rate of regression
fault detection then software evolves. Defect free
software increases the confidence of customer in the
software, so it is important for any software organization
to develop techniques that helps software testers to
detect faults within specified time and cost. Test case
prioritization is technique which prioritizes test cases for

————————————————
 Himanshi Raperia is currently teaching as an assistant professor in

computer science department at lovely professional University, India,
PH-8960097227. E-mail: er.raperia@gmail.com

 Saurabh Srivastava is currently pursuing masters degree program in
computer science and engineering in lovely professional University,
India, PH-8699499269. E-mail: iam100rabh@gmail.com

International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013 2
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

regression testin so that maximum number of faults can
be detected without compromising with cost and time.
Earlier work describes the code coverage based TCP
Strategies and their benefits. Coverage based TCP done
their prioritization based on their coverage of statements.

Zheng Li, Mark Harman, and Robert M. Hierons in
their research paper “Search Algorithms for Regression
Test Case Prioritization” published in 2007 that for
prioritizing statement coverage the test cases are ordered
based on the number of statements executed or covered
by the test case such that the test cases covering
maximum number of statements would be executed first.
Some of the other techniques are branch coverage and
function coverage. In this method test cases are
prioritized based on their number of branch or function
coverage by test case respectively.

The benefits of the code coverage strategies were
measured using weighted average of the percentage of
branch covered (APBC), percentage of decision covered
(APDC) and percentage of statement covered (APSC)
.APBC is the rate of coverage of blocks during testing
process, APDC is a measure of rate of coverage of
decisions for a test suite and the APSC is a measure of
rate of coverage of statements during test suite. The
disadvantage of the above method is that no importance
for fault. My aim is to give equal weightage of rate of fault
detection and also identification of severe faults at the
earlier stages of the testing process.

Several case studies demonstrate the benefits of code
coverage based TCP strategies. Researchers have used
various prioritization techniques to measure APFD values
and found statistically significant results. The APFD value
is a measure that shows how quickly the faults are
identified for a given test suite set. The APFD values
range from 0 to 100 and the area under the curve by
plotting percentage of fault detected against percentage
of test cases executed.

The code coverage-based TCP strategies were
shown to improve the rate of fault detection, allowing the
testing team to start debugging activities earlier in the
software process and resulting in faster software release
to the customer. If all the faults are not equally severe,
then APFD leads misleading information. The fault impact
value also has to be considered to prioritize the test
cases.

3 PROPOSED PRIORITIZATION TECHNIQUE:

A. Factors to be considered for prioritization
Two factors are used for prioritization. These two factors
are discussed below, and the reasoning of why they
were chosen for prioritization technique:

1) Rate of fault detection:

The average number of faults detected per minute by a
test case is called rate of fault detection. The rate of fault
detection of test case i have been calculated using the
number of faults detected and the time taken to find out
those faults for each test case of test suite.

RFi = ((number of faults) / time) * 10 …………… (1)

Every factor is converted into 1 to 10 point scale. The
reason being, earlier work may take long time (may be
several months or a year) depending on the size of the
test suite and how long each test case takes to run. The
technique implements a new test case prioritization
technique that prioritize the test cases with the goal of
giving importance of test case which have higher value
for rate of fault detection and severity value.

2) Impact of fault:

Testing efficiency can be improved by focusing on the
test case that is likely to cover high number of severe
faults. So, for each fault severity value was assigned
based on impact of the fault on the product. Severity
value has been assigned based on a 10 point scale as
shown below:

• Complex (Severity 1): SM value of 9-10
• Moderate (Severity 2): SM of 6
• Low (Severity 3): SM of 4
• Very Low (Severity 4): SM of 2

Once the fault has been detected then we assign
some severity measure to each fault according to the
type of the fault. For example we can assign the
severities to the faults in decreasing order of the
severity as follows.

Timing/ serialization 10

Function 9

Unknown 8

Assignment 7

Environment 6

Interface 5

Algorithm 4

Data 3

Checking 2

GUI 1

Total Severity of Faults Detected (TSFD) in the
module is the summation of severity measures of all
faults identified for a module.

 i=n
TSFD = Σ SM (severity measure)
 i=1

This equation shows TSFD for a module where n
represents total number of faults identified for the
module.

According to the equation (5) the severity value of
each test case can be calculated as follows:

International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013 3
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

1. T1 = 6
2. T2 = 6
3. T3 = 6
4. T4 = 10
5. T5 = 8
6. T6 = 10
7. T7 = 4
8. T8 = 20
9. T9 = 12
10. T10 = 6

Equation (2) shows that the severity value of test case i,
where t represent number of faults identified by the ith
test case.
 t
 Si = Σ SV
 f=1
If Maximum(S) is the high severity value of test case
among all the test cases then fault impact of ith test case
is shown below:
FIi = (Si/ Maximum(S)) * 10(3)

 Assign Severity Value

Fault detected for

test case

1

2

3

4

5

6

7

8

9

10

T1 x x

T2 x x

T3 x x

T4 x x x

T5 x x

T6 x x x

T7 x

T8 x x x x

T9 x x

T10 x x

Table 1: CALCULATING SEVERITY OF FAULTS

3) Test Case Weightage

Test case weight of ith test case is computed as follows.

TCWi = RFTi * FIi ………(4)

Test cases are sorted for execution based on the descending

order of TCW, such that test case with highest TCW runs first.

4 ALGORITHM:

THE PROPOSED PRIORITIZATION TECHNIQUE IS
PRESENTED IN AN ALGORITHMIC FORM HERE UNDER: THE
INPUT OF THE ALGORITHM IS TEST SUITE T, TEST CASE
WEIGHTAGE OF EACH TEST CASE IS COMPUTED USING THE
EQUATION (4) AND THE OUTPUT OF THE ALGORITHM IS
PRIORITIZED TEST CASE ORDER.

Algorithm:
4) Begin
5) Set T’ empty
6) for each test case t ε T do
7) Calculate test case weightage as TCW = RFT *

FI.
8) end for
9) Sort T in descending order on the value of test

case weightage
10) Let T’ be T
11) End

case
fault

T1 T2 T3 T4 T5 T6 T7 T8 T9 T
10

F1 * *
F2 * * *
F3 * * *
F4 * *
F5 *
F6 * *
F7 * * *
F8 * *
F9 * * *
F10 * *
faults 2 2 2 3 2 3 1 4 2 2
Time 9 8 14 9 12 14 11 10 10 13
Severity 6 6 6 10 8 10 4 20 12 6

Table 2: TEST CASES DETECTING NUMBER OF FAULTS

Rate of fault can be calculated using eqn. (1)

 RFT1 = (2/9)*10=2.22

 RFT2 = (2/8)*10=2.5

 RFT3= (2/14)*10 =1.428

 RFT4= (3/9)*10=3.33

 RFT5= (2/12)*10=1.66

 RFT6= (3/14)*10=2.142

 RFT7= (1/11)*10=0.9

 RFT8 = (4/10)*10=4.0

 RFT9 = (2/10)*10=2.0

 RFT10= (2/13)*10=1.538

From Equation (3) Fault impact of test cases T1, T2….T10

respectively.

International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013 4
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

 FI1 = (6/20)*10 = 3.0

 FI2 = (6/20)*10 = 3.0

 FI3 = (6/20)*10 = 3.0

 FI4 = (10/20)*10 = 5.0

 FI5 = (8/20)*10 = 4.0

 FI6 = (10/20)*10 = 5.0

 FI7 = (4/20)*10 = 2.0

 FI8 = (20/20)*10 = 10.0

 FI9 = (12/20)*10 = 6.0

 FI10 = (6/20)*10 = 3.0

From Eq. (4) test case weightage of test cases T1,
T2, T10 respectively.

 TCW1 = 5.22

 TCW2 = 5.5

 TCW3 = 4.428

 TCW4 = 8.33

 TCW5= 5.66

 TCW6= 7.142

 TCW7= 2.9

 TCW8= 14.0

 TCW9 = 8.0

 TCW10= 4.538

Prioritize the test case according to decreasing order of
their test case weightage (TCW), so the prioritized test
case order is: T8, T4, T9, T6, T5, T2, T1, T10, T3, and
T7.

Comparison between prioritized and non prioritized test
case:

The comparison is drawn between prioritized and non
prioritized test case, which shows that number of test
cases needed to find out all faults are less in the case of
prioritized test case compared to non prioritized test
case the APFD can be computed according to equation
(5).

APFD = 1 – TF1 + TF2 + ……+ TFm /nm + 1/2n ……
(5)

where , m = the number of faults contained in the
program under test P

n = the total number of test cases

TFi = The position of the first test in T that exposes fault
i.

APFD for Prioritized test case:

APFD = 1 – 1 + 6 + 2 + 6 + 1 + 1 + 2 + 7 + 2 + 7/ 10*10
+ 1/ 2* 10

APFD = 0.70

APFD for Non Prioritized test case:
APFD = 1 + 8 + 2 + 4 + 2 + 8 + 8 + 4 + 1 + 4 + 1 / 10* 10
+ 1 / 2* 10
APFD = 0.63

Results indicate that the Average percentage of fault
detected is better in case of prioritized test cases as
compared to random ordering of test cases.
The results prove that the proposed prioritization
technique is effective.

Lots of research has been done and techniques are
developed on test case prioritization for regression
testing. Wong et al proposed a hybrid technique which
combines modification, minimization and prioritization
based selection using source code changes and test
history [3]. They also suggested that prioritization
approach could be especially useful when testers can
only afford to rerun a few regression tests.
Elbaum et al proposed an improved test case
prioritization technique by incorporating varying test
costs and fault severities [2].
 Kim et al modeled regression testing as an ordered
sequence of testing sessions and presented a history
based prioritization technique which utilizes the
information from previous testing [4].
Our proposed algorithm processes the number of faults
and edges in individual independent paths of any
software module calculated using control flow graph and
gives priority to the set of paths. The cost and time
required by this algorithm is lower as compared to the
other techniques mentioned above. This proposal makes
use of the control flow graph, so that it is hard to apply
this technique when source code is not available.

5 CONCLUSION
 In this paper, we proposed a general process of test
case prioritization in regression testing. To implement it,
we also propose an algorithm which prioritizes the test
cases on the basis of the rate of fault detection and
impact of fault.
 Our results suggest that this technique can improve the
rate of fault detection of test suites. The test case
prioritization technique that we have generated can be
described as “general prioritization techniques” in the
sense that they are applied to a base version of a
program, with no knowledge of the location of
modifications to the software, in the hope of producing a
test case ordering that will be effective over subsequent
versions of the software.
Future work will be based on extension of this proposed
algorithm and comparison of this technique with already

International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013 5
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

existing techniques and modifying our technique to a
more cost and time efficient one.
6 References

[1] Marius Nita David Notkin “White-Box Approaches for Improved

Testing and Analysis of Configurable Software Systems” IEEE
2009.

[2] Girish Janardhanudu”White Box Testing” in 2009.
[3] Gregory M. Kapfhammer “Software Testing” ACM 2008
[4] Jon Oltsik”Black Box Testing and Codenomicon DEFENSICS” in

2008.
[5] Hyunsook Do, Siavash Mirarab, Ladan Tahvildari “An Empirical

Study of the Effect of Time Constraints on the Cost-Benefits of
Regression Testing” ACM 2008.

[6] Goutam Kumar Saha “Understanding Software Testing
Concepts” ACM 2008.

[7] R. Pressman, Software Engineering: A Practitioner’s Approach.
Boston: McGraw Hill, 2001.

[8] Bo Jiang, Zhenyu Zhang , W. K. Chan, T. H. Tse, “Adaptive
Random Test Case Prioritization” IEEE/ACM International
Conference on Automated Software Engineering, 2009 .

[9] Dongjiang You, Zhenyu Chen, Baowen Xu1, Bin Luo and Chen
Zhang “An Empirical Study on the Effectiveness of Time-Aware
Test Case Prioritization Techniques” , 2011.

[10] Ashwin G. Raiyani & Sheetal S. Pandya “Prioritization technique
for minimizing number of test cases” International Journal of
Software Engineering Research & Practices Vol.1, Issue 1, Jan,
2011.

[11] R. Kavitha & Dr. N. Sureshkumar “Test Case Prioritization for
Regression Testing based on Severity of Fault” International
Journal on Computer Science and Engineering Vol. 02, No. 05,
2010.

[12] R.Krishnamoorthi and S.A.Sahaaya Arul Mary “Regression Test
Suite Prioritization using Genetic Algorithms” International
Journal of Hybrid Information Technology Vol.2, No.3, July, 2009.

[13] Gregg Rothermel_ Roland H. Untchy Chengyun Chuz Mary Jean
Harrold “Prioritizing Test Cases For Regression Testing” 2001.

